

Next-gen backward-compatible **multicore fiber** with unprecedented bandwidth within the standard physical envelope

FEATURES

Increased link capacity provided by several individual cores enabling Spatial Division

Multiplexing within the standard fiber outer diameter

Compatible with existing interfaces due to ITU-T G.652 & G.657.B3 (bend-loss) compliance

Unique internal design to avoid crosstalk and provide bend-immunity

High space-efficiency, featuring more physical channels per cm²

Lower energy consumption and lower operational costs

Complete solution available with ready fan-in/fan-out connectors to network installations

Available in **specialty metalized coatings** for resilience to hazardous environments

Special core composition available to enable active and/or radiation hardened multicore fibers

SPECS

- Fiber type:Single-mode
- Network standards: ITU-T G.652
- Cross-talk: -40 dB for 1550 nm
- Bend loss: <0.1 dB (better than ITU-T G.657.B3)

APPLICATIONS

- 5G network infrastructure increased bandwidth within a single fiber
- Modernization of the existing dense network infrastructure
 more network capacity within the already limited space
- Data Centers improved airflow & thermal management thanks to the cabling reduction
- Industry 4.0 information networks higher bandwidth in a single fiber, ready for harsh environment applications
- · Aviation reduction of cabling with multiple cores within one fiber
 - Space payload and space reduction with space-hardened multicore fibers; active fiber amplifiers

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 880054